If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1.2x=0
a = 1; b = 1.2; c = 0;
Δ = b2-4ac
Δ = 1.22-4·1·0
Δ = 1.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.2)-\sqrt{1.44}}{2*1}=\frac{-1.2-\sqrt{1.44}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.2)+\sqrt{1.44}}{2*1}=\frac{-1.2+\sqrt{1.44}}{2} $
| g12=1 | | 8m=96 | | 6a-6=2a+18 | | 6x+5=2x−3 | | 3)-7+2x=9 | | 2)6x-2=10 | | 3x+9=12x-54 | | 6.1=n+3.7 | | 8x+2x-5=7x+6-5x | | -600=8x | | −11=7(1−2f)+10 | | -4(y+7)=6y+42 | | 5(x–9)=6x+2x-6 | | 3x-19=5x^8 | | 21x-15=180 | | (5x-7)=(4x+4) | | (3x+28)=(7x-8) | | 6t^2+t−15=0 | | 2(12-x)=7(6x+3) | | P(t)=-t^2+22t+112 | | X^2+2x—35=0 | | X^2+13x+x=0 | | 119+44+9x+3=180 | | 28=−7x | | 7^(2x-5)^3=343 | | 7^(2x-5)3=343 | | 2y+6=4y+10 | | x2-x-20=2x+8 | | 2x+8=180° | | 2b-5b=-19 | | 29+3x=8 | | 7x+23-6=8 |